If X is a random vector

the covariance matrix is
![\Sigma
= \begin{bmatrix}
\mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \\ \\
\mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \\ \\
\vdots & \vdots & \ddots & \vdots \\ \\
\mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)]
\end{bmatrix}.](http://upload.wikimedia.org/math/5/8/5/58572fa5b05e778f5a5eff9ec1b3ddb6.png)
Det(Σ) = ∏ni=1λi≥0 where λi's are eigenvalues of Σ.
Since Σ is symmetric and positive definite, it can be diagonalized and its eigenvalues are all real and positive and the eigenvectors are orthogonal.
det(Σ)=det(VΛVT)=det(V)⋅det(Λ)⋅det(VT)=det(Λ)
det(V)=±1 because det(VV−1)=det(V)det(V−1)=det(V)det(VT)=det(V)2=1
References:
http://www.ece.unm.edu/faculty/bsanthan/EECE-541/covar.pdf
No comments :
Post a Comment